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Bragg gratings filters are a fundamental component for achieving wavelength selective func-

tionality in silicon photonics. In this report, the fundamental principles of designing a Bragg 

grating on silicon is presented. In addition, a practical filter design operating at 1550 nm is 

demonstrated. The proposed filter design was able to achieve a transmission of -52 dB with a 

bandwidth of 10 nm at 1550 nm. 

he Bragg grating is an essential opti-

cal device created by periodic varia-

tion in effective refractive index along 

the propagation direction in a waveguide or 

an optical fiber core. 1 This index modulation 

is typically achieved by spatially alternating 

the material (such as in distributed Bragg re-

flectors lasers) or by changing the physical 

dimensions of a waveguide. Bragg gratings 

have found use in many optical devices 

such as semiconductor lasers, and sensors. 

The index modulation profile of these grat-

ings induce a wavelength-selective function-

ality. As such, these devices are suited for 

optical filter design.  

 In this report, the theory of waveguide-

based Bragg grating design will be covered. 

Afterwards, a practical filter, designed to op-

erate at the telecommunication wavelength 

of 1550 nm will be presented. The report 

also includes the simulated optical response 

of the proposed design. The report con-

cludes with a look at the practical fabrication 

considerations for the design.  

Theory of Bragg Gratings   

 The periodic nature of the index profile re-

sults in a forward and backward travelling 

wave in the waveguide. These reflected 

waves (backward waves), interfere con-

structively in a narrow region centered on 

the Bragg wavelength (filter wavelength). 2 

The relative phase of the reflected waves is 

determined by the grating period. The opti-

cal response of these periodic structures 

may be calculated based on Coupled Mode 

Theory (CMT).  

 

 
Fig. 1 | Square grating index profile. Illustration of a pe-

riodic index profile (𝒏(𝒛)) in a corrugated waveguide with 

periodically varying effective index (𝒏′𝒆𝒇𝒇). 𝚲 is the grating 

period, and 𝒓 is the field reflection coefficient. The arrows 

pointing in the −𝑧 directions indicates the multiple distrib-

uted reflections throughout the waveguide grating.2 

 

 CMT assumes that eigenmodes of a cou-

pled waveguide system can be represented 

by the guided modes of the individual wave-

guide (linear system). Furthermore, in the 

following derivations, the law of conserva-

tion of energy is employed. Based on previ-

ous work 2, the refractive index 𝑛(𝑧) for a pe-

riodic structure can be written as  

 

𝑛(𝑧) = 𝑛(𝑧 +  Λ) = 𝑛′𝑒𝑓𝑓 +
4

𝜋

Δ𝑛′

2
cos(2𝛽0𝑧) (1) 

 

Where 𝛽0 the Bragg waveguide propagation 

is constant, 𝑛′𝑒𝑓𝑓 is the average index value, 

and Δ𝑛′ 2⁄  is the amplitude of the periodic in-

dex variation. In the above derivation the 

transverse and lateral variations are ne-

glected and the assumption of rectangular 

index variation is taken. The phase detune 

T 



(𝛿) originating due to the periodic index per-

turbation can be modeled as 

 

 𝛿 =  𝛽0  − 
𝑀𝜋

Λ
  (2) 

 

For maximum reflection at the Bragg wave-

length (𝜆0), the phase detune is zero. Where 

𝑀 is the period order. For the proceeding for-

mulations, a first-order structure with 𝑀 = 1 

will be assumed. From equation 2, by setting 

𝛿 = 0, and knowing 𝛽0 = 2𝜋𝑛′𝑒𝑓𝑓 𝜆0⁄  the 

necessary period of the index perturbation is 

determined 

 

 Λ =
𝜆0

2𝑛′𝑒𝑓𝑓
 (3) 

 

As before, neglecting all transverse and lat-

eral field variations the propagating electric 

field is defined by 2 

 

 
𝑑𝐸(𝑧)

𝑑𝑧
 +  [𝑛(𝑧)𝑘]2𝐸(𝑧) = 0 (4) 

 

Where 𝑘 = 2𝜋 𝜆⁄  is the free-space propa-

gation constant for wavelength 𝜆. Expanding 

the second term in equation 4 and neglect-

ing high order (Δ𝑛)2 terms yields 

 

 [𝑛(𝑧)𝑘]2 = 𝛽2  +  4𝛽𝜅𝑐𝑜𝑠(2𝛽0𝑧)  (5) 

 

Where 𝛽 is the propagation constant at 

wavelength 𝜆 and 𝜅 is the coupling coeffi-

cient given by 

 𝜅 =
2Δ𝑛

𝜆
  (6) 

 

Considering wavelengths 𝜆 near the Bragg 

wavelength 𝜆0, the field 𝐸(𝑧) may be de-

composed into the right- and left-propagat-

ing waves: 2 

 𝐸(𝑧) = 𝑅(𝑧)𝑒−𝑗𝛽0𝑧  +  𝑆(𝑧)𝑒𝑗𝛽0𝑧  (7) 

 

By substituting equation (7) and (5) into (4) 

and neglecting higher-order differential 

terms yield the couple-mode equations 

(CMEs) 2:  

 

 
𝑑𝑅(𝑧)

𝑑𝑧
+  𝑗(𝛽 −  𝛽0)𝑅(𝑧) = −𝑗𝜅𝑆(𝑧)  (8) 

 

 
𝑑𝑆(𝑧)

𝑑𝑧
−  𝑗(𝛽 −  𝛽0)𝑆(𝑧) = −𝑗𝜅𝑅(𝑧)  (9) 

 

The general solutions to these coupled, lin-

ear, first-order differential equations are 

given by 2 
 

 𝑅(𝑧) = [cosh(𝛾𝑧) − 𝑗
Δ𝛽

𝛾
sinh(𝛾𝑧)] 𝑅(0) − 𝑗

𝜅

𝛾
sinh(𝛾𝑧)𝑆(0)  (10) 

 

 𝑆(𝑧) = [cosh(𝛾𝑧) + 𝑗
Δ𝛽

𝛾
sinh(𝛾𝑧)] 𝑆(0) + 𝑗

𝜅

𝛾
sinh(𝛾𝑧)𝑅(0)  (11) 

 

Where 𝛾2 = 𝜅2 − Δ𝛽2 and Δ𝛽 =  𝛽 − 𝛽0 is 

the propagation constant off-set from 𝜆0 with 

Δ𝛽 <<  𝛽0. The reflectivity (𝑅) in the stop-

band (Δ𝛽2 <  𝜅2) for Bragg grating of length 

𝐿 is given by: 

 

 𝑅𝑠𝑡𝑜𝑝  =
|𝜅|2 sinh2(|𝛾|𝐿)

|𝛾|2 cosh2(|𝛾|𝐿)+Δ𝛽2 sinh2(|𝛾|𝐿) 
  (12) 

 

The reflectivity (𝑅) in the passband (Δ𝛽2 ≥

 𝜅2) for Bragg grating of length 𝐿 is given by: 

 

 𝑅𝑝𝑎𝑠𝑠  =
|𝜅|2 sin2(𝛾𝐿)

𝛾2 cos2(𝛾𝐿)+Δ𝛽2 sin2(𝛾𝐿) 
   (13) 

 

From equation 12, the maximum peak 

power reflectivity occurs when Δ𝛽 = 0: 

 

 𝑅𝑝𝑒𝑎𝑘  = tanh2(𝜅𝐿)  (14) 

 

In addition the bandwidth of Bragg grating is 

defined as 3 

 ∆𝜆 =
𝜆0

2

𝜋𝑛𝑔
√𝜅2 + (𝜋 𝐿⁄ )2  (15) 

For sufficiently long gratings (𝜅 >> 𝜋 𝐿⁄ ), 

equation 15 may be simplified to:  



 

 ∆𝜆 =
𝜆0

2𝜅

𝜋𝑛𝑔
  (16) 

 
Where the group index (𝑛𝑔) defined as 

 

 𝑛𝑔  = 𝑛𝑒𝑓𝑓  − 𝜆
𝑑𝑛𝑒𝑓𝑓

𝑑𝜆
  (17) 

 
Note however, the bandwidth defined in 

equation 15 is not the 3dB bandwidth, but 

rather the bandwidth between the first nulls 

around the main reflection peak. 

Filter Design 

 For Bragg grating designs, in general, a 

single-mode (TE) waveguide is preferred. 3 

Thus, by adhering to Si thickness in stand-

ard CMOS foundry compatible SOI wafers, 

the width (Fig. 2) of the waveguide must be 

determined.  

 
Fig. 2 | Standard SOI wafer. The standard dimensions 

of a commercially available SOI wafer. The buried oxide 

layer must be of sufficient thickness to isolate the top Si 

waveguide from the Si substrate.3 

 

In addition, an oxide cladding for the Bragg 

grating is used. Oxide cladding is typically 

used to protect the waveguide structure from 

oxidation, and to permit metal interconnects 

above the waveguide.4 Consequently, add-

ing the cladding has the effect of symmetric 

intensity distribution for TM mode (Figure 4). 

Given these practical design constraints, the 

effective index of the waveguide was deter-

mined via parameter sweep in Lumerical 

MODE solutions. First, however, the ideal 

width of the waveguide for single mode op-

eration must be chosen. As such, a width 

parameter sweep (at 1550 nm wavelength) 

in Lumerical MODE Solutions was con-

ducted: the results of which is shown in Fig-

ure 3.  

 
Fig.3 | Supported guided modes in a waveguide. The 

plot illustrates that there are various number of supported 

modes for the waveguide depending on the waveguide 

width. The refractive index contrast is defined as the re-

fractive index difference between the effective index of 

any given mode and the SiO2 refractive index (~1.444 @ 

1550 nm).  

 

Based on results from above, a waveguide 

width of 500 nm is chosen for the Bragg grat-

ing design. A width of 500 nm is chosen for 

two reasons: ease of manufacturing, and the 

relatively small intensity confinement for the 

second TE mode. Figure 4 shows the field 

intensity confinement for the three possible 

guides modes for a width of 500 nm:  funda-

mental TE mode (blue line in Figure 3), fun-

damental TM mode (orange line in Figure 3), 

and second TE mode (yellow line in Figure 

3). As can be seen from the bottom plot of 

Figure 4, the choice of 500 nm width for the 

waveguide is justified given the field intensity 

distribution for the second TE mode is 

mostly along the sidewalls on the wave-

guide. Therefore, the effective index is small 

for this mode compared to the fundamental 



TE mode and thus, results in higher propa-

gation loss.  

 
Fig. 4 | Field intensity plot for guided modes. The top 

field plot showcases the field distribution for the funda-

mental TE mode for a waveguide of width 500 nm. Like-

wise, the middle and bottom plots displays the field inten-

sity for the fundamental TM and second TE mode, re-

spectively. Note, SiO2 substrate is present for y < 0 𝜇𝑚 

(not shown in the dotted white structural outline).  

 
Having determined an appropriate width for 

the waveguide the effective index for the 

three guided modes where calculated. The 

calculated effective indices, group indices, 

and loss for the modes are summarized in 

table 1 below. Using this information and the 

data from table 2, the grating period can be 

calculated using the Bragg condition (eq. 3). 

 
Mode # 𝒏𝒆𝒇𝒇 𝒏𝒈 Loss (dB/cm) 

1 2.445198 4.208971 0.00044982 

2 1.770684 3.737372 0.00025060 

3 1.494712 2.400141 0.00012373 
Table 1 | Calculated effective indices for the in-

put/output waveguides. The table summarizes the ef-

fective index, group index and loss calculated for the 

three guided modes present in a waveguide with a width 

of 500 nm. The calculations were performed using Lu-

merical MODE Solutions.   

 

 Based on the data presented in table 1 for 

the fundamental TE mode, the period of the 

Bragg grating is calculated to be  

316.948 𝑛𝑚. The next parameter to be de-

termined is the corrugation depth, which de-

termined the coupling coefficient and in turn 

the bandwidth of the grating in the stopband.  

To achieve sub-nanometer bandwidth using 

strip waveguides require corrugation width 

of less than 10 nm. 4 Given the fabrication 

limitation, this level of performance is chal-

lenging to achieve. Therefore, a modest 

bandwidth of 20 nm will be targeted. Given 

this design bandwidth, the coupling coeffi-

cient (𝜅) is determined to be 1.04223 ×

10−4 𝑛𝑚−1 from equation 15. Knowing the 

coupling coefficient, the required index con-

trast between the periodic variations (∆𝑛) is 

determined to be 0.08077 from equation 6 

at the Bragg wavelength. Based on simula-

tion results (table 2) the ideal corrugation 

depth to achieve this index contrast is 25 

nm.  
Segment  Width (nm) 𝒏𝒆𝒇𝒇 

475  2.400218 

525 2.479579 
Table 2 | Calculated effective indices for the Bragg 

grating segments. The table summarizes the effective 

index of the fundamental TE mode for the two main wave-

guide segments in a Bragg waveguide filter. The calcula-

tions were performed using Lumerical MODE Solutions.   

 



 Based on the determined values for the 

period and corrugation depth, a Lumerical 

EigenMode Expansion (EME) simulation 

was conducted to obtain the optical re-

sponse of the Bragg grating structure (Fig. 

5). From equation 3, it is easily observed that 

the period of the Bragg grating is directly pro-

portional to the Bragg wavelength. From the 

results presented in Figure 5, when the pe-

riod is increased (decreased), the Bragg 

wavelength red shifts (blue shifts). Even a 

minor period shift of 2 nm can shift the oper-

ational wavelength as much as 5 nm. This 

suggests, the proposed design is highly sen-

sitive to fabrication tolerances.  

 

 
Fig. 5 | EME Bragg grating optical response. Top dia-

gram illustrated the simulated Bragg grating structure 

with a period of 317 nm, a corrugation width of 25 nm and 

an overall structural length of 158.5 𝜇𝑚. The plot illus-

trates the simulated transmission spectra for Bragg grat-

ings with different periods (500 grating periods). 

 

Furthermore, for the case of period of 317 

nm (designed value), the response of the 

Bragg grating is not centered on 1550 nm as 

expected. This suggests there might be a 

sight miscalculation with regards to the ef-

fective index of the fundamental TE mode. 

In addition, the calculated bandwidth of 20 

nm (as defined in equation 15) with a corru-

gation width of 25 nm was not achieved. 

Based on the results presented in Figure 5, 

the bandwidth was calculated to be ~8 nm.  

This suggests that the coupling coefficient is 

lower than the designed value. Additionally, 

the EME wavelength sweep tool might have 

introduced some error due to silicon material 

dispersion. Therefore, to obtain more accu-

rate results, a 3D Lumerical Finite Difference 

Time Domain (FDTD) simulation with 280 

grating period was run. The results of which 

can be seen in Figure 6 below.  

 
Fig. 6 | FDTD optical response. The simulated optical 

response of a Bragg grating for a period of 317 nm. The 

device shows -52 dB power transmission at the design 

wavelength of 1550 nm with a bandwidth (between the 

first nulls) of ~10 nm. The simulated device contained 280 

grating periods (~89 𝜇𝑚).  

 

 Based on the FDTD results, the band-

width of the proposed Bragg grating is ~10 

nm: approximately half of the design band-

width of 20 nm. However, from a perfor-

mance perspective, a narrower bandwidth is 

preferred for a filter. As mentioned before, 

the derivation of bandwidth in equation 15 is 

for the first nulls around the main reflection 

peak. However, this derivation did not take 

into account material loss. Therefore, the 

discrepancy of bandwidth could be the result 

of this approximation as the second term un-

der the square root of equation 15  is de-



pendent on the propagation constant devia-

tion, Δ𝛽. The losses can be accounted by re-

placing Δ𝛽 by Δ𝛽 − 𝑗𝛼𝑜 3, where 𝛼𝑜 is the 

field loss coefficient.  

Fabrication Considerations  

 There are number of factors that must be 

considered when fabricating the proposed 

Bragg grating design. For instance, it is evi-

dent from equation 14, as the length of 

Bragg grating is increased, the peak reflec-

tivity at the Bragg wavelength approach 

unity. In fabricating these large devices non-

uniformity becomes a concern as variations 

in width and thickness is introduced. One so-

lutions is to design long Bragg gratings in-

side a small area by designing spiral Bragg 

gratings. In addition, the given design con-

tains high aspect ratio geometries, which are 

challenging to manufacture. In practical fab-

rication process, the square corrugations 

are likely to be fabricated with soft corners. 

Since the design is highly reliant on the prop-

agating mode in these corrugation seg-

ments, the device is likely to deviate from the 

designed operation. The issue may be rem-

edied by introducing empirical measure-

ment data into the device design work flow 

or alternatively, rely on advanced lithogra-

phy simulations to simulate the fabrication of 

the device. 

Summary  

 The report focused on the fundamental 

theory of designing Bragg waveguide filters 

using couple mode theory equations. A 

practical design of one such device operat-

ing at 1550 nm was presented. For practical 

purposes, the proposed device was de-

signed based on a commercially available 

SOI wafer with a 220 nm Si layer. Based on 

simulation results from Lumerical (photonic 

simulation software), the proposed design 

was able to achieve a filter transmission re-

sponse of -52 dB with a bandwidth of 10 nm 

at 1550 nm. Given the high-aspect ratio ge-

ometries and the size of the proposed de-

sign, there is considerable sensitivity to fab-

rication errors. Thus, an iterative design pro-

cess with the integration of empirical or sim-

ulated fabrication data is needed for the op-

timal design of the device. Furthermore, in-

tegrating a heater (thermo-optic effect) or a 

PN-junction (plasma effect) may be needed 

to further tune the response of the device 

post-fabrication.  
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